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A systematic procedure to derive shell models for magnetohydrodynamic turbulence is proposed. It takes
into account the conservation of ideal quadratic invariants such as the total energy, the cross helicity, and the
magnetic helicity, as well as the conservation of the magnetic energy by the advection term in the induction
equation. This approach also leads to simple expressions for the energy exchanges as well as to unambiguous
definitions for the energy fluxes. When applied to the existing shell models with nonlinear interactions limited
to the nearest-neighbor shells, this procedure reproduces well-known models but suggests a reinterpretation of
the energy fluxes.
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I. INTRODUCTION

Understanding the existence and the dynamics of the
magnetic field of the Earth, of the Sun, and, in general, of
other celestial bodies remains one of the most challenging
problems of classical physics. Astronomical and geophysical
observations have provided many insights into these phe-
nomena �1–3�. Laboratory experiments �4,5� have confirmed
that generation of magnetic field �dynamo� can take place
under various circumstances and lead to a variety of complex
behaviors. However, analytical approaches of this problem
are extremely complicated while numerical efforts are lim-
ited to a range of parameter space that is often quite distant
from the realistic systems. For instance, in certain astro-
physical bodies as well as in laboratory experiments, the ki-
nematic viscosity � of the fluid is 6 orders of magnitude
smaller than its resistivity �. The two dissipation processes
therefore take place at very different time scales. This prop-
erty makes direct numerical simulation of dynamo intrac-
table. Due to this reason we resort to simplified models.

Shell models specifically belong to this class of simplified
approaches �6�. They have been constructed to describe in-
teractions among various scales without any reference to the
geometric structure of the problem. They were first intro-
duced for fluid turbulence with the quite successful GOY
�Gledzer, Ohkitani and Yamada� shell model �7,8� and have
been extended to magnetohydrodynamic �MHD� turbulence
�9–12�. In shell models, drastically reduced degrees of free-
dom �usually only one complex number� are used to describe
the entire information provided by a shell of Fourier modes
in wave-number space. This approach reduces the descrip-
tion of turbulence from a partial differential equation to a
reduced set of ordinary differential equations and provides a
simplified tool for studying the energy and helicity ex-
changes between different scales at a significantly reduced
numerical cost.

The present work aims at deriving the expressions for the
energy fluxes and the energy exchanges for MHD turbulence
in a systematic and consistent manner. Then we apply this
scheme to study energy transfers in a shell model of MHD.
This approach follows quite closely the previous efforts in
which fluxes and energy exchanges have been identified for

the complete MHD equation. However, in these works
�13,14�, energy exchanges between two degrees of freedom
have been determined from the triadic interactions up to an
indeterminate circulating energy transfer. The strategy
adopted in the present paper is somewhat different. Here, we
derive the energy-transfer formulas from the energy equa-
tions by identifying the terms that participate in these trans-
fers. This process also involves various symmetries and con-
servation laws of the ideal �dissipationless� equations. In
particular, the energy transfer from the magnetic field in a
shell to the magnetic field in another shell is driven by the
convective term of the induction equation that conserves the
total magnetic energy. The identification of this convective
term in the shell model is one of the main improvements of
the present approach. It is actually required to define physi-
cally meaningful shell to shell energy transfers. One of the
main advantages of the present formalism is that we need not
worry about the indeterminate circulating transfer appearing
in the related past work by Verma and co-workers �13,14�.

The dynamo process involves growth of magnetic energy
that is supplied from the kinetic energy by the nonlinear
interactions. As we will show in the paper, a clear and un-
ambiguous identification of the various energy fluxes and
energy exchanges between the velocity and the magnetic
fields is very important in the study of dynamo effects. This
is one of the main motivations for the development of the
present approach. The approach is also explicitly applied in
Sec. IV to the derivation of the GOY shell model to MHD
�12�.

The outline of the paper is as follows. A general formal-
ism for expressing the various constraints satisfied by the
nonlinearities in the shell models is discussed in Sec. II. It is
shown in Sec. III that this formalism can be adapted nicely to
the derivation of explicit expressions for the energy fluxes as
well as for the shell-to-shell energy exchanges in shell
model. In Sec. IV, we apply the formalism to the GOY shell
model for MHD turbulence �12� and study the energy fluxes
for MHD turbulence. In Sec. V, we present our conclusions.

II. SHELL MODELS OF MHD TURBULENCE

Shell models were first introduced for fluid turbulence
�see, for example, �7,8,15��. They can be seen as a drastic
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simplification of the Navier-Stokes or the MHD equations
which, assuming periodic boundary conditions, are ex-
pressed in Fourier space as follows:

duk

dt
= nk�u,u� − nk�b,b� − �k2uk + fk, �1�

dbk

dt
= nk�u,b� − nk�b,u� − �k2bk, �2�

where uk and bk are the velocity and magnetic field Fourier
modes, respectively, with wave vector k. The norm of this
wave vector is k= �k�. The viscosity � and the magnetic dif-
fusivity � are responsible for the dissipative effects in these
equations while energy is injected through the forcing term
fk. The nonlinear term is defined by

nk�x,y� = iP�k� · �
p+q=−k

�k · xq
��yp

� , �3�

where x and y can be either the velocity or the magnetic
field. The tensor P is defined as

Pij�k� =
k2�ij − kikj

k2 . �4�

It projects any field to its divergence-free part and it is used
since only incompressible flows are considered in this study
�� ·u=0�. In the velocity equation, the projection of the non-
linear terms using the tensor �4� replaces the introduction of
the pressure term. In the magnetic field equation, the nonlin-
ear terms are usually not projected to their divergence-free
parts. Indeed, the nondivergence-free parts of the two non-
linear terms cancel each other and the constraint � ·b=0 is
automatically satisfied. The writing of the nonlinear term in
the magnetic field equation using the form �3� has been used
to stress and explore the inner symmetries in the MHD equa-
tions.

The incompressible MHD equations are known to con-
serve the total energy, the cross helicity, and the magnetic
helicity. The conservation of these quantities plays a central
role for the derivation of shell models. Similarly, the conser-
vations of both the kinetic helicity and the kinetic energy in
absence of magnetic field are used to simplify further the
shell model for MHD. There is however another property
that has not been exploited so far: the conservation of mag-
netic energy by the first nonlinear term in the magnetic field
equation. Indeed, assuming periodic boundary conditions, it
is easy to prove that

�
k

nk�u,b� · bk
� = 0. �5�

The identification of a similar term in shell models for MHD
will prove to be very useful in determining the energy ex-
changes and the energy fluxes in the shell model.

The equations of the evolution of the variables in a shell
model are designed to mimic as much as possible the MHD
equations �1� and �2�. In order to build the shell model using
a systematic procedure, we first introduce the partition of the
Fourier space into shells si defined as the regions
�k�� �ki−1 ,ki�, where ki=k0�i. In this definition, k0 corre-

sponds to the smallest wave vector. The number of shells is
denoted by N, so that the wave vectors larger than k0�N−1 are
not included in the model. Any observable that would be
represented in the original MHD equation by its Fourier
modes xk is described in the framework of the shell model
by a vector of complex numbers noted X. Each component xi
of this vector summarizes the information from all the modes
xk corresponding to the shell si. It is also very useful to
introduce the vector Xi for which all components but the ith
are zero

X = �x1,x2, . . . ,xN� � CN, �6�

Xi = �0,0, . . . ,0,xi,0, . . . ,0� � CN, �7�

X = �
i=1

N

Xi, �8�

where the expansion �8� is a direct consequence of the defi-
nition of Xi.

In the following, the scalar product of two real fields will
be needed for defining various quantities such as kinetic and
magnetic energies, cross helicity, and kinetic and magnetic
helicities. Using the Parseval’s identity, the shell model ver-
sion of this physical space scalar product is expressed as
follows:

�X�Y� 	 �
i=1

N
1

2
�xiyi

� + yixi
�� . �9�

Due to the nonlinear evolution of the velocity and the mag-
netic field in the MHD equations, any attempt to design a
mathematical procedure that would reduce the description of
these fields to two vectors of complex numbers U and B
must lead to closure issues. In the derivation of a shell
model, the shell variables are usually not seen as projected
versions of the original MHD variables and their evolution is
not derived directly from the MHD equations �1� and �2�.
The evolution equations for U and B are rather postulated
a priori, but a number of constraints are imposed on the shell
model. In this section, the models are build by imposing on
the evolution equations for these vectors as many constraints
as possible derived from conservation properties of each of
the terms appearing in the original MHD equations.

Property 1. The nonlinear term in the evolution equation
for U is a sum of two quadratic terms: The first one depends
on U only and conserves the kinetic energy EU and the ki-
netic helicity Hk independently of the value of the field B;
the second term depends on B only.

Property 2. The nonlinear term in the evolution equation
for B is a sum of two bilinear terms. The first one must
conserve the magnetic energy EB independently of the value
of the field U.

Property 3. The full nonlinear expression in both the
equations for U and B changes sign under the exchange
U↔B.

The dynamical system for the shell vectors can therefore
be written as

dtU = Q�U,U� − Q�B,B� − �D�U� + F , �10�
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dtB = W�U,B� − W�B,U� − �D�B� , �11�

where the term proportional to � models the viscous effect,
the term proportional to � models the Joule effect, and F
stands for the forcing. The linear operator D is defined as
follows:

D�X� = �k1
2x1,k2

2x2, . . . ,kN
2 xN� � CN. �12�

Now, the conservation laws must be enforced. Assuming
incompressibility, in the ideal limit and in absence of forcing
�F ,� ,�→0�, the model is expected to conserve the total
energy Etot=EU+EB, the cross helicity Hc, and the magnetic
helicity Hm. In terms of shell variables of the model, the
energies and the cross helicity are defined for the original
MHD equation as

EU =
1

2
�U�U� , �13�

EB =
1

2
�B�B� , �14�

Hc = �U�B� . �15�

The definitions of the kinetic helicity and the magnetic
helicity require the expressions for the vorticity
O= �o1 , . . . ,oN� and the magnetic potential vector
A= �a1 , . . . ,aN�. These quantities are not trivially defined in
shell models since they require the use of the curl operator.
Nevertheless, they should be linear function of the velocity
and magnetic field, respectively. The kinetic helicity and the
magnetic helicity are then defined as follows:

Hk = �U�O� , �16�

Hm = �A�B� . �17�

In terms of conservation laws, property 1 imposes the fol-
lowing constraints that correspond to the conservation of the
kinetic energy and the kinetic helicity, respectively, by the
first quadratic term in the U equation:

�Q�U,U��U� = 0 ∀ U , �18�

�Q�U,U��O� = 0 ∀ U . �19�

Here, the notation “∀U” must be understood as “for all pos-
sible values of the shell variables U as well as O that is
defined by U.” The conservation of the magnetic energy by
the first quadratic term in the B equation �property 2� im-
poses

�W�U,B��B� = 0 ∀ U,B . �20�

The conservations of the total energy and of the cross helic-
ity, respectively, correspond to

�Q�U,U� − Q�B,B��U� + �W�U,B� − W�B,U��B�

= 0 ∀ U,B , �21�

�Q�U,U� − Q�B,B��B� + �W�U,B� − W�B,U��U�

= 0 ∀ U,B . �22�

These two constraints are equivalent since the second
is obtained simply from the first under the exchange
�U ,B�→ �B ,U�. Hence, the general procedure adopted here
shows that in the ideal limit, for a shell model with the struc-
tures �10� and �11�, the conservation of the total energy Etot

implies the conservation of the cross helicity Hc and vice
versa. Moreover, taking into account the constraints �18� and
�20�, the conservation of the total energy and cross helicity
reduces to

�Q�B,B��U� + �W�B,U��B� = 0 ∀ U,B . �23�

Finally, the conservation of the magnetic helicity imposes the
condition

�W�U,B��A� + �W�B,U��A� = 0 ∀ U,B . �24�

Again, the notation “∀U ,B” must be understood as “for all
possible values of the shell variables U and B as well as O
and A that are defined by U and B, respectively.” The spe-
cific form of the nonlinear terms in the general shell models
�10� and �11� cannot be defined further without giving ex-
plicit definitions for O and A. The choice of the interactions
retained in the nonlinear terms �for example, first neighbor-
ing shell or distant shell interactions �16,17�� must also be
made explicit in order to reach the final form of the shell
model. An example will be treated in Sec. IV.

If the shell model has to reproduce all the symmetries of
the original MHD equation, the following equality could also
be imposed:

W�X,X� = Q�X,X� . �25�

It is a consequence of the particular way of writing the MHD
equations in which all nonlinear terms, including those ap-
pearing in the magnetic field equation, are made explicitly
divergence free through the application of the projection op-
eration �4�. In the example treated in Sec. IV, this equality
appears as a direct consequence of the other constraints im-
posed on the structure of the shell model. Nevertheless, if the
present approach is applied to more complex shell models
for MHD, it might be interesting to keep the equality �25� in
mind in order to simplify the nonlinearities as much as pos-
sible.

III. ENERGY FLUXES AND ENERGY EXCHANGES

A. Evolution equations for the shell energies

The kinetic and magnetic energies associated with the
shell sn are defined as en

u= �Un �Un� /2 and en
b= �Bn �Bn� /2.

The evolution equations for these quantities are easily ob-
tained in the inviscid and unforced limit

dten
u = Tn

u = �Q�U,U� − Q�B,B��Un� , �26�

dten
b = Tn

b = �W�U,B� − W�B,U��Bn� . �27�

The quantity Tn
u corresponds to the energy transferred into

the velocity field in shell sn and coming from either the ve-
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locity or the magnetic fields. Since the first term of Eq. �26�
conserves the total kinetic energy �cf. Eq. �18��, it is identi-
fied as the rate of energy Tn

uu flowing from the complete
velocity field into the velocity field in the nth shell. The
second term of Eq. �26� must then account for the energy
coming from the magnetic field �Tn

ub�, i.e.,

Tn
uu = �Q�U,U��Un� , �28�

Tn
ub = − �Q�B,B��Un� . �29�

Similarly, Tn
b corresponds to the energy transferred into the

magnetic field in shell sn and coming from either the velocity
field or the magnetic field. The first term of Eq. �27� con-
serves the total magnetic energy �cf. Eq. �20�� and is identi-
fied with the rate of energy flowing from the complete mag-
netic field to the magnetic field of the nth shell. The second
term of Eq. �27� corresponds to the energy flowing to the Bn
shell from the complete velocity field, i.e.,

Tn
bb = �W�U,B��Bn� , �30�

Tn
bu = − �W�B,U��Bn� . �31�

With this notation, the evolution equations for en
u and en

b be-
come �with dissipative and forcing terms�

dten
u = Tn

uu + Tn
ub − 2�kn

2en
u + Pn

f , �32�

dten
b = Tn

bb + Tn
bu − 2�kn

2en
b, �33�

where Pn
f = �F �Un� is the kinetic-energy injection rate into the

shell sn due to the external forcing.
It is also convenient to introduce the following decompo-

sition of the vectors of shell variables:

Xi
� = �x1,x2, . . . ,xi−1,xi,0, . . . ,0� � CN, �34�

Xi
� = �0,0, . . . ,0,xi+1,xi+2, . . . ,xN� � CN, �35�

X = Xi
� + Xi

�. �36�

where i can take any value between 1 and N. The kinetic
energy contained in the vector Un

� is simply given by

En
U�

= �Un
� �Un

�� /2=� j=1
n ej

u. The magnetic energy contained
in the vector Bn

� is defined similarly. The evolutions of these
quantities are easily derived from the relations �32� and �33�,

dtEn
U�

= �
j=1

n

Tj
uu + �

j=1

n

Tj
ub − D�n

� + Pn
f�, �37�

dtEn
B�

= �
j=1

n

Tj
bb + �

j=1

n

Tj
bu − D�n

� , �38�

where Pn
f�= �F �Un

�� is the injection rate of energy in Un
� due

to the forcing and D�n
� =��D�U� �Un

�� and
D�n

� =��D�B� �Bn
�� are the dissipative terms for Un

�

and Bn
�, respectively.

B. Energy fluxes

The nonlinear terms in the Eqs. �37� and �38� correspond
to the nonlinear energy fluxes that enter or leave the sphere
of radius k0�n. These fluxes can be further specified. Indeed,
the first sum in the right-hand side of the Eq. �37� comes
from the quadratic Q�U ,U� term which conserves the total
kinetic energy. Hence, this first sum must correspond to the
kinetic-energy flux �U�

U��n� from Un
� to Un

�,

�U�
U��n� = �

j=1

n

Tj
uu = �Q�U,U��Un

�� . �39�

The antisymmetry property for the fluxes can be used to
define the opposite transfer: �U�

U��n�=−�U�
U��n�. It simply

expresses that the energy gained by Ui
� due to the nonlinear

interaction is equal and opposite to the energy lost by Ui
�.

The magnetic energy fluxes can be similarly defined as

�B�
B��n� = �

j=1

n

Tj
bb = �W�U,B��Bn

�� . �40�

It should be noted that the definition of this flux and the
property 2 of Sec. II are intimately linked. Indeed, in order to
define a flux between B� and B�, a channel of interactions
that conserve the magnetic energy must be identified. For
instance, the flux �40� is defined as the sum of the increases
of magnetic energy in shells corresponding to wave numbers
smaller than kn due to this specific channel, W�U ,B�. Physi-
cally, it should be equivalently defined as the energy leaving
the magnetic field with large wave numbers because of this
same channel

�B�
B��n� = − �

j=n+1

N

Tj
bb = − �W�U,B��Bn

�� . �41�

Clearly,

�B�
B��n� = �

j=n+1

N

Tj
bb = �W�U,B��Bn

�� . �42�

These two definitions must be equivalent. Therefore, if this
flux is physically well defined, the following property comes
from Eqs. �9�, �36�, and �41�:

�W�U,B��Bn
�� = − �W�U,B��Bn

�� ⇒ �W�U,B��Bn
� + Bn

�� = 0

⇒ �W�U,B��B� = 0. �43�

In other words, defining an energy flux between B� and B�

due to a specific nonlinear term is only possible if this non-
linear term conserves the magnetic energy. Slightly anticipat-
ing on Sec. IV, it is because the fluxes defined in �12� do not
meet this property that our approach leads to a different defi-
nition of the various fluxes.

The “cross” fluxes between the velocity and the magnetic
field can also be defined systematically. The second sum in
the right-hand side of Eq. �38� corresponds to the flux of
energy from Bn

� to U and readily leads to the following
definitions:
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�B�
U �n� = �

j=1

n

Tj
bu = − �W�B,U��Bn

�� , �44�

�B�
U �n� = �

j=n+1

N

Tj
bu = �W�B,U��Bn

�� . �45�

Since these terms are linear in U, each of them can easily be
split into two contributions related to Un

� and Un
�, respec-

tively,

�B�
U��n� = − �U�

B��n� = − �W�B,Un
���Bn

�� , �46�

�B�
U��n� = − �U�

B��n� = − �W�B,Un
���Bn

�� , �47�

�B�
U��n� = − �U�

B��n� = − �W�B,Un
���Bn

�� , �48�

�B�
U��n� = − �U�

B��n� = − �W�B,Un
���Bn

�� . �49�

The formulas �39�–�49� show that the various fluxes can be
defined univocally, almost independently of the structure of
the shell model as long as the terms conserving kinetic and
magnetic energies have been identified. It must be stressed
that, at this stage, the exact expressions for the nonlinear
terms Q and W are not needed.

C. Shell-to-shell energy exchanges

The expression for some of the energy exchanges between
two shells may be derived from the above analysis. For in-
stance, the quantity Tn

bu has been identified as the energy flux
from the entire velocity field to the magnetic field associated
to the shell sn. The expansion �8� for U can be inserted into
the term Tn

bu and leads to

Tn
bu = �

m=1

N

− �W�B,Um��Bn� = �
m=1

N

Tnm
bu , �50�

where each term in this sum can now be identified as the
shell-to-shell energy exchange rate from the velocity field in
the shell sm to the magnetic field in the shell sn,

Tnm
bu = − �W�B,Um��Bn� . �51�

Similarly, by inserting the expansion �8� for B into the term
Tn

bb, it is possible to identify the shell-to-shell energy ex-
change rate from the magnetic field in the shell sm to the
magnetic field in the shell sn as follows:

Tmn
bb = �W�U,Bm��Bn� . �52�

Since the quantities Tnm
xy are a shell-to-shell energy exchange

rate �the notation xy is referred to as general exchange and it
can take values uu, ub, bu, or bb�, the following antisymme-
try property is to be satisfied:

Tmn
xy = − Tnm

yx . �53�

It is worth mentioning that the present analysis does not
lead to a simple definition of the shell-to-shell kinetic-energy
exchanges Tnm

uu . This is due to the presence of three velocity

variables in the expression for the U-to-U transfers that pre-
vents a simple identification of the origin of the kinetic-
energy flux. Nevertheless, considering the relation �25�, the
quantity Tn

uu �28� can be rewritten as follows:

Tn
uu = �W�U,U��Un� , �54�

and, by analogy with the expression �52�, it is reasonable to
adopt the following definition:

Tnm
uu = �W�U,Um��Un� . �55�

The shell-to-shell energy exchanges give a more refined pic-
ture of the dynamics in the shell model than the fluxes. It is
thus expected that these fluxes can be reconstructed from all
the Tnm

xy . The general formulas are given by

�X�
Y��n� = �

i=n+1

N

�
j=1

n

Tij
xy , �56�

�X�
Y��n� = �

i=1

n

�
j=1

n

Tij
xy , �57�

�X�
Y��n� = �

i=n+1

N

�
j=n+1

N

Tij
xy . �58�

As a direct consequence of the property �53�, the same anti-
symmetry property holds for the energy fluxes. In the next
section we will focus on a specific model adopted in �12�.
We will derive the formulas for the energy fluxes and com-
pute them numerically.

IV. GOY SHELL MODEL FOR MHD TURBULENCE

The results derived in Secs. II and III are valid for any
shell model for MHD that use only one complex number per
shell for each field �velocity and magnetic� and for which the
properties �1–3� are satisfied. As long as the vorticity and the
magnetic potential vector have not been defined explicitly, it
is not possible to specify further the exact structure of the
shell model, i.e., the structure of the nonlinear terms Q and
W. In this section, we revisit the GOY-like shell model for
MHD turbulence studied in �12� and apply the formalism
discussed in Secs. II and III to this model. The choice to
apply the formalism derived in the previous sections to the
GOY model is motivated by the explicit computation of en-
ergy fluxes presented in �12� which allows a direct compari-
son. It does not mean that GOY models have to be consid-
ered as superior to other shell models in representing the
phenomenology of MHD turbulence. The shell model is de-
fined by the following expressions for the nonlinear Q and W
terms:

qn�X,X� = ikn�	1xn+1
� xn+2

� + 	2xn−1
� xn+1

� + 	3xn−2
� xn−1

� � ,

�59�
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wn�X,Y� = ikn�
1xn+1
� yn+2

� + 
2xn−1
� yn+1

� + 
3xn−2
� yn−1

�

+ 
4yn+1
� xn+2

� + 
5yn−1
� xn+1

� + 
6yn−2
� xn−1

� � .

�60�

This shell model is fully determined if the following defini-
tions for the vorticity and the magnetic potential vector are
also adopted:

oi = �− 1�iuiki, �61�

ai = �− 1�ibi/ki. �62�

Imposing the conditions derived in the previous section from
the various conservation laws �Eqs. �18�–�20�, �23�, and
�24�� lead to the following values of the parameters 	i and

i:

	2 = − 	1
� − 1

�2 	3 = − 	1
1

�3 ,


1 = 	1
�2 + � + 1

2��� + 1�

2 = − 	1

�2 − � − 1

2�2�� + 1�
,


3 = 	1
�2 − � − 1

2�3�� + 1�

4 = 	1

�2 + � − 1

2��� + 1�
,


5 = − 	1
�2 + � − 1

2�2�� + 1�

6 = − 	1

�2 + � + 1

2�3�� + 1�
.

As discussed at the end of Sec. IV, this shell model also
satisfies the constraint �25�. It is indeed easy to verify
that these parameters satisfy the following equalities:

1+
4=	1, 
2+
5=	2, and 
3+
6=	3.

In order to verify that the model derived here is exactly
the same as the model discussed in �12�, the dynamical sys-
tem �Eqs. �10� and �11�� can then be rewritten after a few
algebraic manipulations as

dtun = ikn�pn�U,U� − pn�B,B�� − �kn
2un + fn, �63�

dtbn = ikn�vn�U,B� − vn�B,U�� − �kn
2bn, �64�

where

pn�X,X� = 	1
xn+1
� xn+2

� −
� − 1

�2 xn−1
� xn+1

� −
1

�3xn−2
� xn−1

� � ,

�65�

vn�X,Y� =
	1

��� + 1�
�xn+1

� yn+2
� + xn−1

� yn+1
� + xn−2

� yn−1
� � .

�66�

With these coefficients, the model �Eqs. �63� and �64�� is
clearly the same as the one derived in �12�. Our interpreta-
tion of some of the shell-to-shell energy exchanges and the
energy fluxes derived in the Sec. IV and computed in the
next section differs from those of �12�. When we compare
the two approaches carefully, we find that the velocity to
velocity energy flux �U�

U� and the total fluxes are the same

for both the formalism, but other fluxes involving the mag-
netic field are different. This is due to the fact that the com-
plete function W is never computed in �12� because the
property 2 was not used explicitly in the derivation of the
shell model. In particular, the part of the bilinear term that
conserves the magnetic energy in the magnetic field equation
was not identified. It was not needed to derive completely the
model coefficient. However, this identification is needed if
the energy fluxes have to be defined unambiguously, which is
the main objective of this work, but not of the approach
developed in �12�. In the following section we compute the
above fluxes using numerical simulation of shell model.

V. NUMERICAL RESULTS

We simulate the shell model �Eqs. �63� and �64�� with
�=10−9 and �=10−6. The magnetic Prandtl number is then
PM =� /�=10−3. The shells ratio is taken to be the golden
mean: �= �1+�5� /2. This choice is the largest value of � for
which, when considering three consecutive shells �n, n+1,
and n+2�, the largest values of k in shell n+2 can be the
longest side of a triangle while the two other sides can cor-
respond to values of k from shells n and n+1. All k’s in shell
n+2 then correspond to at least one triad. Moreover, this
choice has also been adopted in order to have a direct com-
parison to the results presented by Stepanov and Plunian
�12�. We take the number of shells as N=36 and apply non-
helical forcing to s4, s5, and s6 according to the scheme pre-
scribed in �12� with an energy injection rate �i.

Although the shell variables experience a very complex
evolution, the system reaches a statistically steady state fairly
rapidly. We compute the energy spectra and energy fluxes
under steady state by averaging over many time frames
�
108�.

A. Energy spectra

We plot kinetic-energy and magnetic energy spectra in
Fig. 1 for steady state. We observe that until k
104 both the
kinetic and magnetic energies show power-law behavior with
−2 /3 spectral exponent consistent with Kolmogorov’s spec-

0 1 2 3 4 5 6 7
−10

−8

−6

−4

−2

0
Kinetic

Magnetic

Total

lo
g 1

0
E

log10 kn

-2/3

-2/3

FIG. 1. �Color online� Kinetic and magnetic energy spectra
�=10−9 and PM =10−3.
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trum. After k
104, the magnetic energy decays exponen-
tially due to the Joule dissipation, while the kinetic energy
continues to exhibit power-law behavior with the same spec-
tral exponent of −2 /3 till k
k�
106.5, where k� is the
Kolmogorov’s wave number. Note that the Kolmogorov’s
wavelengths for magnetic diffusion and thermal diffusion are
k�= ��i /�3�1/4 and k�= ��i /�3�1/4, respectively, and they are
quite close to our cutoffs of 104 and 106.5. Up to slight dif-
ferences due to the time steps or the initial conditions,
steady-state spectra reported in the present simulations are in
good agreement with the results presented by Stepanov and
Plunian �12�.

Although the spectra presented in Fig. 1 and in �12� are
very similar, they are interpreted slightly differently for the
low wave vector regime �k�k��. In this regime, Plunian and
Stepanov reported a “−1” spectral exponent for both velocity
and magnetic fields. However, the results presented in Fig. 1
appear to be compatible with a “−2 /3” exponent. This dif-
ference of interpretation is possibly due to the rather short
range of wave vectors which makes the determination of the
exponent quite difficult. The analysis of the energy fluxes
however tends to support the −2 /3 scaling in the range
k�k�.

B. Energy fluxes

According to the formulae �56�–�58�, the energy fluxes
are computed as functions of the shell index n. However, in
this section, we present them as a function of wave number.
The energy fluxes are proportional to the energy supply rate.
Therefore, we report these fluxes in units of total-energy sup-
ply rate. First we focus on the various fluxes of kinetic en-
ergy leaving U�. Three fluxes correspond to �Eqs.
�56�–�58��, �U�

U��n�, �B�
U��n�, and �B�

U��n� and they are rep-
resented in Fig. 2. In addition, we also report the energy
fluxes �B

U� and �all
U� that are defined as

�B
U� = �B�

U� + �B�
U�, �67�

�all
U� = �U�

U� + �B�
U� + �B�

U� = �B
U� + �U�

U�. �68�

Finally, the total-energy flux ��
� leaving the sphere of wave

vector smaller than kn, from either the velocity or the mag-
netic field, is also presented in Fig. 2

��
� = �U�

U� + �B�
U� + �U�

B� + �B�
B�. �69�

We compute the energy fluxes for our shell model by
averaging over many time frames once we reach steady state.
The properties of these fluxes depend on the Prandtl number
as described in earlier works �12�. In this paper we report
these fluxes for PM =10−3 and they are illustrated in Fig. 2.
Here we present all the energy fluxes and compare our re-
sults to those of Stepanov and Plunian �12�. We find that the
energy fluxes ��

� and �U�
U� are in good agreement with the

corresponding fluxes reported by Stepanov and Plunian �12�.
However the energy fluxes from the velocity field to the
magnetic field and vice versa do not match as our new defi-
nitions proposed in previous section differ from those of
Stepanov and Plunian.

The energy fluxes can be interpreted in the following
manner. The explanation of energy flux leaving U���all

U�� is
relatively simple. Energy injected in the forcing range must
flow out of the variable U� through the flux �all

U� which
redistributes energy from U� to the variables B and U� and
through viscous dissipation. For kn�k��10−6.5, the viscous
dissipation is negligible and the flux �all

U� is independent of
kn and equal to �i. For kn
k�, the dissipation of U� is sig-
nificant and �all

U� gradually decays. It is evident from Fig. 2
that the viscous dissipation rate �nu is 0.33 and the remaining
energy supply �1−0.33=0.67� gets transferred to the mag-
netic energy that is finally dissipated through Joule heating.

Now we turn to the total-energy flux ��
�. We observe

three plateaux that can be interpreted as follows. First,
��

��1 is flat in the range kn�k� since the dissipation of
both the magnetic and the kinetic energies is negligible in
this range. The second range is k��kn�k� where the mag-
netic energy dissipated through Joule heating. For our set of
parameters, the Joule dissipation �� is approximately 0.67. In
this range, kinetic energy is not dissipated strongly, as a re-
sult we observe Kolmogorov’s spectrum for the kinetic en-
ergy. Hence our spectra and flux results are consistent. The
third regime is k�k� where kinetic energy is dissipated. The
amount of viscous dissipation is approximately 0.33.

The energy flux from U� to B� is denoted by �B�
U�. This

flux is approximately 0.38 for lower wave numbers. The
wave numbers in B� also receive significant energy from U�

shells and it is approximately 0.46 for these wave numbers.
The energy flux �B�

U�, which is the energy-transfer rate
from U� to B�, increases in the range k�k�. This is due to
the fact that in this wave-number range, all U� shells transfer
energy to B� for the parameters chosen by us. In the range
k�n�, the energy transfer from U� to B� is negligible be-
cause B� is very small; consequently �B�

U� is constant in this
range. The plateau value of 0.67 represents the total energy
transferred from the velocity field to the magnetic field and is
equal to ��.

The energy flux �B
U� is the sum of �B�

U� and �B�
U�. The

flux �B�
U� decreases gradually to zero near k=k�, while �B�

U�

approaches the plateau near k=k�. We observe that the quan-
tity �B

U� has a bump near k�. Since �all
U�=�B

U�+�U�
U� and

�all
U� has been observed to be rather flat near k�, the flux

�U�
U� has a downward bump near k�.
In Fig. 3 we plot the energy fluxes leaving U�, U�, B�,

and B� spheres along with the energy dissipation. In each

0 2 4 6 8
0.2

0

0.2

0.4

0.6

0.8

1

1.2
Π

s

log10 kn

Π<
>

ΠU<

all

ΠU<

U>

ΠU<

B

ΠU<

B<

ΠU<

B>

FIG. 2. �Color online� Energy fluxes in function of the logarithm
of kn. �=10−9 and PM =10−3.
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plot, the red �gray� line indicates the value of the overall
energy flux leaving the corresponding region. It is 1.0 �en-
ergy injection� for U� and 0.0 for the other regions in steady
state. In the next section we will study the energy flux from
B� to B� ��B�

B��.

C. �B�
B� and Reynolds number effects

We compute the magnetic energy flux �B�
B� using the defi-

nition �42�. Surprisingly we find that �B�
B��0 for the range

k�k� indicating an inverse cascade of magnetic energy.
These results are obviously different from the positive mag-
netic energy flux reported by Carati et al. �18� and Alexakis
et al. �19� using direct numerical simulations �DNSs� of
MHD equations. Note however that these DNS studies have
been performed for PM =1 and at a much lower Reynolds
number ��−1=�−1=103�. In order to compare the shell-model
results to DNS, we simulated the shell model �Eqs. �63� and
�64�� for parameters close to those used in DNS �18�
��=21/4, �i=1, �=10−3, PM =1, and N=38�. The forcing was
kept similar to that of �12� in order to avoid dynamical align-
ment �20�. For these parameters, the magnetic energy flux of
shell model and the DNS are in general agreement with each
other.

In order to investigate whether the change of direction in
the magnetic energy cascade is an effect of the magnetic
Prandtl number or of the magnetic Reynolds number, we
compute the flux �B�

B� for various values of PM and � while
keeping the energy injection rate �i=1 constant. In these
simulations, the shell parameter � has been set back to the
value �1+�5� /2. The results have been displayed in Fig. 4.
In shell models, the scale at which the energy is injected
gives a typical length and the energy injection rate together
with this typical length lead to a typical “velocity.” In our
case, the corresponding estimation of the magnetic Reynolds
number is Rm�10−1 /�.

Our calculations show that the magnetic energy flux ap-
pears to depend mainly on the magnetic Reynolds number
and not on the Prandtl number for a fixed �. The flux �B�

B�

seems to have two main features: a negative plateau for
kn�k� and a positive bump near magnetic dissipation wave
number k�. The negative-energy cascade of magnetic energy
is absent in DNS. The appearance of negative-energy flux in
the shell mode is rather surprising. These issues need further
investigation.

In Fig. 5 we summarize all the flux results. Since �B�
B�

changes sign near k�, we compute the energy fluxes for two
different wave numbers: kn=102.27 and kn=103.76. For

0 2 4 6 8
0.2

0

0.2

0.4

0.6

0.8

1

1.2

log
10
k
n

Fluxes leaving U
<

U<

U>

U<

B<

U<

B>

Dissip(U
<
)

0 2 4 6 8
0.5

0

0.5

1

log
10
k
n

Fluxes leaving U
>

U>

U<

U>

B<

U>

B>

Dissip(U
>
)

0 2 4 6 8
0.8

0.6

0.4

0.2

0

0.2

0.4

0.6

0.8

log
10
k
n

Fluxes leaving B
<

B<

U<

B<

U>

B<

B>

Dissip(B
<
)

0 1 2 3 4 5 6 7

0.8

0.6

0.4

0.2

0

0.2

0.4

0.6

0.8

1

log
10
k
n

Fluxes leaving B
>

B>

U<

B>

U>

B>

B<

Dissip(B
>
)

(b)(a)

(c) (d)

FIG. 3. �Color online� Fluxes of energy leaving each the four regions of the variable’s space in function of the separating wave number
kn. Red �gray� line represents the rate of energy injection.
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kn=102.27, �B�
B� is negative. On the contrary, for kn=103.76,

�B�
B� is positive. The net dissipation of B� shells is 0.20 for

the latter, contrary to zero dissipation for the former case.
The difference in the two cases occurs because ���.

The fluxes other than �B�
B� are all positive in qualitative

similarity to the DNS results. The values of these fluxes are
different in the two wave-number regimes essentially due to
the fact ���.

VI. CONCLUSION

A general derivation of shell models for MHD has been
proposed. The conservation of the traditional ideal invariants
of three-dimensional MHD turbulence is expressed as gen-
eral constraints that must be satisfied by the nonlinear terms
in the shell model. The conservation of the kinetic helicity
and kinetic energy by the hydrodynamic shell model in ab-
sence of magnetic field also leads to constraints on the non-
linearities. The similarity between the original MHD equa-
tions and the shell model is pushed one step further by
identifying one term in the magnetic field equation in the
shell model that conserves the magnetic energy. It corre-
sponds to the advection of magnetic field by the velocity in
the MHD equations. This identification is necessary to derive
expressions for the transfers of magnetic energy between dif-
ferent shells. This procedure is presented using a very gen-

eral formalism which leads to a number of interesting results.
We show that the conservation of the cross helicity and

the conservation of the total energy are equivalent in shell
models. This equivalence is a direct consequence of the sym-
metries of the MHD equations expressed by the general
properties 1–3 presented in Sec. II

The expressions for the energy fluxes that are valid inde-
pendently of the specific structure of the nonlinear couplings
between the shell variables have been derived. The knowl-
edge of these fluxes is quite important when the shell models
are used to explore dynamo regime. These expressions could
even be used to derive shell models that would maximize or
minimize certain energy transfers depending on the physics
that has to be modeled.

Also, expressions for the shell-to-shell energy exchanges
are derived. Like in the original MHD equations, the energy
exchange mechanisms in shell models unavoidably involve
three degrees of freedom �triadic interaction�
�13,14,18,19,21–24�. It is thus not obvious to derive expres-
sion for shell-to-shell energy exchanges that are viewed as
energy transfers between only two degrees of freedom. Nev-
ertheless, the formalism presented in Sec. II yields a very
natural identification of most of these energy exchanges. The
only exception concerns the U-to-U energy exchanges. A
simple expression is however also proposed for these quan-
tities by analogy with the B-to-B energy exchanges.

Another property of the formalism presented here is the
clear separation between the treatment of the conservation
law and the assumptions that have to be made to define both
the magnetic and the kinetic helicities. Because these helici-
ties involve quantities that are defined using the curl opera-
tor, they are not very well adapted to shell models. It is thus
quite appropriate to clearly present the expressions for the
vorticity and the magnetic potential as additional assump-
tions required to fully specify the structure of the shell
model.

The procedure has been applied to a specific class of shell
models based on first neighbor couplings known as the GOY
model. It has been shown that the general constraint natu-
rally leads to the already derived GOY-MHD shell model
�12�. However, the interpretation of the energy fluxes appears
to be simpler in the present formalism. This model together
with our flux definitions point out at a magnetic-to-magnetic
inverse cascade of energy at high magnetic Reynolds num-
ber. It also reproduces the direct cascade observed in �18,19�
for lower values of Rm. This intriguing aspect needs to be
further studied with nonlocal shell models.

Several extensions to this work could be considered. Shell
models using distant interactions between the shell variables
�17� could be analyzed using the same formalism. Also, de-
spite the fact that the presentation has been made for shell
models with one complex number per shell and per field
�velocity and magnetic�, extending the present formalism to
shell models with more degrees of freedom should be quite
obvious. Finally, it would be interesting to explore other
shell models based on alternative definitions for both the
vorticity and the magnetic potential.
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